应用无线传感器网络的智能照明控制系统
智能照明控制在我国存在极大发展潜力及重要现实意义。本文将无线传感器网络、OPC通信与照明控制技术相结合,设计一套智能照明控制系统,实现灯具自动控制,提高系统管理水平。
1 系统方案概述
本文的智能照明控制系统由无线传感器网络、OPC服务器和用户界面三部分组成。
底层的无线网络采用星型结构,包括一个基站和多个从站。其中,从站与被控LED灯连接并将灯的状态信息传送给基站。基站通过RS232与PC机相连,将接受的控制命令下达给从站。系统使用ATmega16L单片机和nRF905无线射频模块构成工作于433MHz的无线网络节点,两者通过SPI串行口相连。
图1 节点结构
上位机中具有专门开发的OPC DA服务器。OPC 服务器与组态软件中开发的用户界面之间采用OPC技术通信,与无线网络中的基站之间采用RS232串行通信。OPC服务器负责将用户下达的控制命令传送给无线网络中的基站,并将基站传输的设备状态上传至用户界面显示。
在组态软件中开发的用户界面能实时准确的显示设备状态,并可实现对LED灯的组合控制、温度控制、PWM控制、定时控制及操作记录等功能。
图2 系统框图
2 系统软件设计
无线传感器网络是由一些低功耗、低成本、体积小的传感器节点,以无线通讯方式组成的网络,融合传感器技术、信息处理技术、嵌入式技术和网络通信技术,实现信息的采集、处理、传输及应用,具有施工成本低、系统扩展性好、运行维护易等优点。本系统的无线网络结构设计如下:
1)网络拓扑
系统无线网络采用星型结构,有基站和从站两类节点。基站与各从站间进行双向通信,从站互不通信。网络中的每个节点都配有ID地址,有接收、发送两种状态,默认处于接收状态。
2)MAC层协议
为避免多个从站同时向基站发送信息导致信道冲突,且照明系统对控制时延性要求不高,所以网络MAC层采用非坚持CSMA/CA协议。通信前,节点先利用nRF905的载波检测引脚CD监听信道是否空闲,若空气中有同频信号则CD自动置高。若信道忙碌则节点随机延迟一段时间后再重新监听。
信道空闲时,节点并不立即发送,而是采取一定的退避机制,将信道冲突的概率降至最小。因为当某从站与基站通信完毕的瞬间,可能有多个要发送数据的从站同时监听到信道空闲,此时信道冲突的可能性最大,所以节点随机退避一段时间后再进行发送。
这里采用二进制指数退避算法BEB,设争用期(即节点发出数据至接收到信道冲突的时间)为2t,各站重传次数为N,从整数集合[0,1,…,(2N-1)]中随机取数,记为R。节点重传产生的时延D为2t的R倍,即D=R×2t。
站点在发送前若检测到信道空闲,就立即启动退避计数器,只要信道空闲,退避计数器就递减,若退避过程中检测到信道被占用则暂停退避计数器并保持计数器值不变,当信道重新空闲时在原有计数值基础上再次启动退避计数器,当计数值减到零时节点发送数据。
图3 非坚持CSMA/CA流程图
3)冲突避免策略
CSMA/CA协议只能解决发送端的数据冲突问题,但接收端仍存在数据冲突的可能,即“隐藏节点”问题。因此系统引入RTS/CTS/DATA/ACK握手机制。具体过程如下:
⑴从站向基站发送前先通过竞争方式获得信道使用权,再向基站发送请求连接帧RTS(Request To Send)。
⑵基站收到从站的RTS帧后,向从站发送连接确认帧CTS(Clear To Send),建立两者之间的通信连接。
⑶从站收到基站的CTS帧后,向基站发送数据帧DATA,若没有收到CTS帧,则重新发送RTS帧。
⑷基站收到从站的DATA帧后,向从站发送数据确认帧ACK。
⑸从站收到基站的ACK帧后,整个通信过程结束,若没有收到,则重新发送DATA。
图4 从站流程图
图5 基站流程图
4)差错控制
在差错控制方面,系统采取数据重发机制与nRF905自身CRC校验相结合的方式。从站在发送RTS或DATA后,若在一定时间内没有收到基站的CTS或ACK,则重新发送传输失败的帧,直到接收到回复或重发次数达到设定值。
另外,nRF905提供对CRC校验的硬件支持,通过设置RF配置寄存器中的CRC_MODE值,采取8位CRC校验。当接收的数据CRC校验出错时,nRF905会自动丢弃错误帧。
5)数据传输
系统有两种数据传输模式:点播和广播。点播是指基站向指定从站发送命令或某一从站向基站传输数据,是点对点通信。广播是指基站向所有从站发送命令,此时目的地址为统一值,是点对多点通信。
6)通信帧
系统有两种帧类型,分别是控制帧RTS、CTS、ACK和数据帧DATA。其中,前导码表明帧的开始;源地址为发送的设备地址;目的地址为接收的设备地址;帧类别说明此帧的功能;有效数据是传输的具体内容;结束码表明此帧的结束。
2.2 OPC DA服务器
OPC技术是用于过程控制的对象链接与嵌入技术,其以COM/DCOM/COM+技术为基础,采用服务器/客户端模式。本系统针对智能照明控制系统的需求,开发专门的OPC DA服务器,设计如下
图6 OPC DA服务器结构图
1)OPC对象与接口
系统编写实现OPC DA服务器的定制接口,采用E形式,以OPC3.0规范为标准,向下兼容OPC2.0版。系统的OPC对象与接口包括OPC Server、OPC Group和OPC Item三种对象。
其中,OPC Server和OPC Group为标准COM对象,服务器对象不支持聚合,支持连接点机制。组对象支持聚合、连接点机制。项对象不是标准的COM对象,通过一个类进行描述,在类中定义项对象的属性和操作方法。
系统OPC Server对象实现的接口包括:IOPCServer、IOPCommon、IOPCBrowseServerAddressSpace、IOPCItemIO 、IOPCItemProperties及IOPCBrowse。OPC Group对象实现的接口包括:IOPCItemMgt、IOPCItemDeadbandMgt、IOPCGroupStateMgt2、IOPCGroupStateMgt、 IOPCSyncIO、 IOPCSyncIO2、IOPCAsyncIO、 IOPCAsyncIO2及IOPCAsyncIO3。
2)服务器地址空间
系统的服务器地址空间由OPC服务器内所有可读写的数据项组成,根据实际情况预先设计,采用树型结构。整个服务器地址空间使用一个自定义的结构体数组进行存储,其结构体成员包括:结点唯一的ID号、结点的名字、父结点的ID号、左子女结点的ID号和右兄弟结点的ID号。最后,系统通过定义一个类对服务器地址空间进行管理。
3)硬件数据采集部分
OPC DA服务器通过RS232串行口与无线网络中的基站连接。本系统将与串口通信有关的API函数封装在一个类中进行管理,并定义一个属于此类的全局变量。通过对此全局变量的读操作,将无线网络基站上传的设备信息写入服务器地址空间及相应的OPC Item中。当OPC服务器接收到控制命令后,会自动调用串口全局变量的写函数,将指令下发给无线网络中的基站,并由基站将指令传输给具体从站。
4)线程设计
图7 OPC DA服务器更新及事务处理流程图
系统的OPC服务器包括一个主线程,两个辅助线程。主线程由服务器启动时自动创建,用于初始化COM库,建立消息循环和处理消息。第一个辅助线程用于处理服务器数据更新及异步事务,线程会周期性更新每个OPC Server对象中所有组对象的数据项,同时执行异步操作事务,并将操作结果回调给客户。
第二个辅助线程用于RS232串口监测,当串口接收到数据后,会以消息方式通知主线程,激发消息处理函数对数据进行处理,最后将处理好的数据写入服务器地址空间。不同线程间采用临界区方式进行同步。
5)数据访问
本系统的OPC服务器支持同步和异步两种数据访问方式,包括提供六种读数据方式,其中IOPCSyncIO2::ReadMaxAge、IOPCSyncIO::Read和IOPCItemIO::Read用于同步读;IOPCAsyncIO2::Read、IOPCAsyncIO3::ReadMaxAge用于异步读;而当数据改变或异步刷新被调用时,采用IOPCCallback::OnDataChange。
本文由于无线网络中的基站会自动将设备最新状态上传至OPC服务器中的服务器地址空间,因此所有读操作都直接读取OPC服务器中的内存数据。OPC服务器具有五种写数据方式,其中同步写操作包括:IOPCSyncIO::Write、IOPCSyncIO2::WriteVQT及IOPCItemIO::WriteVQT;异步写操作包括:IOPCAsyncIO3::WriteVQT、IOPCAsyncIO2::Write。当用户下达指令时,OPC服务器通过调用RS232串口写函数,将命令下传给无线网络中的基站。
图8 异步读数据流程图
图9 同步写数据流程
3 智能照明控制系统模拟组网
本文使用ATmegal6L和nRF905构成无线节点模拟组建一个智能照明控制系统,模拟实现LED灯的组合控制、PWM控制、定时控制等功能。
图10 模拟智能照明控制系统实物图
系统通过ATmega16L开发板上的LED灯模拟被控灯具。温度控制方面,采用白炽灯与晶闸管BTA12-600及光耦隔离器MOC3041相连接模拟被控端。从站的微控制器将实际灯温度值与设定值进行比较,通过PID算法计算修正PWM占空比,调整灯的明暗程度。
最后,系统利用组态王软件开发用户界面。在操作界面上,可实时显示设备状态,对LED灯进行各种控制操作。系统会对各项操作进行历史记录,同时可利用组态王的Web功能使用户能随时随地通过Internet/Intranet实现设备的远程监控。
图11 用户操作界面
试验平台的模拟运行结果表明,该智能照明控制系统满足设计要求,具备良好的可扩展性。
部分程序代码:
uchar csma_ca(void)//载波检测和退避机制
{
uint s=1;
uchar i=0;
uchar ran=0;
uchar j=0;
for(j=0;j<8;j++)//重传次数设置为9次
{
if((PIND&RF_CD)==0)//载波检测
{
srand(t);//随机取值R
ran=(uchar)(rand()%s);
ran=ran*30; // D=R×2t
delay_ms(ran);
}
else
{
s=s<<1;//二进制指数退避
srand(t);
ran=(uchar)(rand()%s);
ran=ran*30;
delay_ms(ran);
}
s=s<<1;
if((PIND&RF_CD)==0)
break;
}
if(j<9)
i=1;//CSMA/CA成功
else
i=0; //CSMA/CA失败
return i;
}
4 结论
本文将无线传感器网络、OPC DA服务器应用于智能照明控制系统中,实现从用户界面到无线终端的整体控制。经验证,系统安装方便、工作稳定、各部分衔接良好,满足控制要求。此外,系统还易于扩展,具有良好的通用性和一定的可移植性,稍作修改可应用于其他控制领域。
本文编自《电气技术》,原文标题为“基于无线传感器网络的智能照明控制系统”,作者为刘璐、周靖林。
#pgc-card .pgc-card-href { text-decoration: none; outline: none; display: block; width: 100%; height: 100%; } #pgc-card .pgc-card-href:hover { text-decoration: none; } /*pc 样式*/ .pgc-card { box-sizing: border-box; height: 164px; border: 1px solid #e8e8e8; position: relative; padding: 20px 94px 12px 180px; overflow: hidden; } .pgc-card::after { content: " "; display: block; border-left: 1px solid #e8e8e8; height: 120px; position: absolute; right: 76px; top: 20px; } .pgc-cover { position: absolute; width: 162px; height: 162px; top: 0; left: 0; background-size: cover; } .pgc-content { overflow: hidden; position: relative; top: 50%; -webkit-transform: translateY(-50%); transform: translateY(-50%); } .pgc-content-title { font-size: 18px; color: #222; line-height: 1; font-weight: bold; overflow: hidden; text-overflow: ellipsis; white-space: nowrap; } .pgc-content-desc { font-size: 14px; color: #444; overflow: hidden; text-overflow: ellipsis; padding-top: 9px; overflow: hidden; line-height: 1.2em; display: -webkit-inline-box; -webkit-line-clamp: 2; -webkit-box-orient: vertical; } .pgc-content-price { font-size: 22px; color: #f85959; padding-top: 18px; line-height: 1em; } .pgc-card-buy { width: 75px; position: absolute; right: 0; top: 50px; color: #406599; font-size: 14px; text-align: center; } .pgc-buy-text { padding-top: 10px; } .pgc-icon-buy { height: 23px; width: 20px; display: inline-block; background: url(https://lf3-cdn-tos.bytescm.com/obj/cdn-static-resource/pgc/v2/pgc_tpl/static/image/commodity_buy_f2b4d1a.png); } 智能照明技术实践教程 ¥29.7 购买林业机器人发展现状与未来趋势
【摘要:新的林业生产方式和快速发展的新技术促进了林业装备的发展,催生了智能装备和林业机器人。林业机器人在提高林业生产力、改变林业生产模式、解决劳动力不足以及实现林业生产和经营规模化、多样化、精准化等方面具有极大的优越性,发展林业机器人对促进我国林业技术革命和实现林业现代化具有重要作用。文中提出林业机器人的定义和分类,阐明林业机器人的应用领域,综述国内外林业机器人发展现状,分析林业机器人发展中遇到的问题,提出林业机器人发展的未来趋势,以为机器人在林业领域中的研究和应用提供参考。我国是林业大国,林业生产和经营关系我国生态安全和林业发展,林业生产和经营方式及装备是林业现代化水平的重要体现。随着技术进步和劳动力减少,从事林业方面的工作者越来越少;同时林地工作环境恶劣、劳动强度大、林业劳动者安全得不到有效保障,现行林业机械无法很好地适应现代林业生产和经营需要。机器人可有效解决上述林业生产和经营中存在的问题,使用机器人代替人力劳动,可减少劳动力成本和林业工作安全隐患,同时提高机械化、自动化和智能化水平,对促进林业现代化具有重要意义。
1 林业机器人的定义和分类
林业机器人是一种柔性、可感知外界信息、重复编程的自动化或半自动化设备,以林业为服务对象,有机结合了机械、电子、计算机控制、人工智能等前沿学科而形成的有机综合体,能通过程序控制来执行林业生产和经营的各种任务,是种特种工作机器人。
根据机器人在林业行业的不同应用领域,可以把林业机器人分为林业生态建设机器人、林业产业机器人和林业多功能集成机器人3类。
1)林业生态建设机器人。主要有林木种苗机器人、困难立地整地机器人、生态恢复机器人、造林与抚育机器人、生物资源及多样性监测与管护机器人、森林火情智能监测与灭火机器人、森林病虫害高效防治机器人、森林环境监测机器人等。
2)林业产业机器人。主要有木材加工机器人、人造板加工机器人、林业资源经济开发机器人、木本油料加工机器人、林副产品生产机器人、竹材加工机器人等。
3)林业多功能集成机器人。主要有经济林果机械化采收及输送机器人、林竹场全程机械化经营机器人等。
2 林业机器人的应用领域
2.1 林业生态建设机器人的应用领域
林业生态建设是林业发展的主体,由于地形等因素限制,现行生态建设多为人工作业,机械化和自动化水平较低。林业生态建设离不开林业机器人和先进技术的支撑,机器人可以促进林业生态建设生产和经营方式的转变,使林业生态建设机械化、智能化,同时加快推动林业生态建设,更好地保护修复林业生态系统。
林业生态建设机器人可广泛应用在栽植、抚育、采运、园林绿化、林业检测、森林保护等领域中。林木种苗机器人可用于松树、杉树等主要林木种子资源采收、干燥、脱粒、精选、分级、储存,林木工厂化育苗,林业苗圃节水喷灌,种子园机动喷药等方面;困难立地整地机器人可用于困难立地清林整地,挖坑、林木(苗)移植,自行式除灌清林联合抚育等方面;生态恢复机器人可用于自动化固沙,污水处理,森林物种保护,植被生物多样性保护,外来物种检验检疫等方面;造林与抚育机器人可用于森林联合伐木,集材联合作业,航空护林,人工嫁接,修枝打枝等方面;生物资源及多样性监测与管护机器人可用于基于全球卫星导航系统的森林、湿地、沙漠资源气候及灾后监测反馈,野生动植物监测和管护等方面;森林火情智能监测与灭火机器人可用于智能化、信息化森林火情监测、预警,大型森林火灾灭火等方面;森林病虫害高效防治机器人可用于复杂山地大型高效、环保、智能化的森林病虫害喷药等方面;森林环境监测机器人可用于污水、废气、固废、辐射、噪声、气象等6类50多项环境指标的监测分析。
2.2 林业产业机器人的应用领域
林业产业对于发展林业生产力和服务社会经济具有重要意义,在我国国民生产总值中所占比例逐年上升。现林业产业多采用工厂化生产线式生产,机械化和自动化水平较高,机器人可促进林业产业生产和经营方式的转变,使林业产业生产智能化、无人化,进一步提高资源利用率和生产效率,获得更大经济效益,进而推动林业产业快速发展。
林业产业机器人可应用于家具加工、人造板加工、竹业加工、林副产品加工等领域。木材加工机器人可用于木结构桁架、墙体自动化制造,大规格胶合木柔性制造,双端锯切、钻削深孔、砂光、组装等关键工艺的集成、自动化、智能化柔性制造,家具及制品加工等方面;人造板加工机器人可用于木材人造板连续热压成型,重组竹连续热压成型等方面;林下经济资源开发机器人可用于蓝莓、木耳、蘑菇等林下资源预处理、分选、存储等方面;木本油料加工机器人可用于油茶、核桃鲜果壳籽分离分选,油脂低温压榨等方面;林副产品生产机器人可用于加工油茶等油料作物的烘干、脱壳、破碎、轧坯和挤压膨化,林药加工的清洗、粉碎、煮提、浓缩、干燥和灭菌,其他林副产品如板栗、印楝、核桃等的剥壳机、清洗设备、杀菌、干燥等方面;竹材加工机器人可用于竹篼处理、竹林整地、竹林抚育、竹材采伐及运输、竹材备料工段连续生产、竹材人造板连续化加工等方面。
2.3 林业多功能集成机器人的应用领域
林场不仅是森林资源管护经营的基本单元,还是优质生态产品的主要提供者,但环境恶劣、劳动力不足、劳动强度大等问题导致无法用现有半机械化水平手段来满足管护和经营的需要,运用林业机器人不仅可降低劳动力成本,提高生产效率,还可提高林场工作的机械化、自动化和智能化水平,最重要的是减少了林场不安全因素,催生了林业多功能集成机器人的产生及发展,林业多功能集成机器人可用于经济林果自动化采收、运输、初加工,现代化林场经营等领域。
山区经济林果机械化采收及输送机器人可以应用于包括山区枣、栗子、核桃等经济林果机械化采收、索道运输、存储等林业一体化作业,实现经济林果不同类型协助机器人的有效集成。
林竹场全程机械化经营机器人可以应用于林场种子采集、苗圃设施、种苗培育、造林、抚育、病虫害防治、林火检测扑救、资源调查、自动化灌溉和生态监测、林区道路修筑、维护、保养和巡护全程机械化研发与示范等,实现多种类、多群体机器人的融合集成。
3 国内外林业机器人发展现状
3.1 国外林业机器人发展现状
国外很早就开始对林业机器人进行研究,由于林业生产作业环境恶劣、作业强度大,同时国外劳动力匮乏,且成本高,所以发达国家大多通过发展林业机器人来缓解,其中日本发展水平最高,日本的林业生产已基本实现机械化,自动化程度较高。
Yasuhiko Ishigure等研发的抚育机器人,使用节电链锯驱动进行修枝,4个主动轮带动机器人螺旋上下移动,依靠链锯进行全方位剪枝,机器人可以依靠自身的重量在树木上维持稳定。日本ISEKI公司研发的用于嫁接的抚育机器人,每小时可嫁接900株左右,成功率超过95%,效率很高。Humayun Rashid等研发的灭火机器人,融合蓝牙、GSM、DTMF、GPS等多种技术,采用传感器感应火焰、温度和烟雾来正确定位火源,实现自动或遥控灭火。日本研发的FRIGO灭火机器人,采用履带式移动机构,搭载可燃气体、伽马射线、神经麻醉气体探测器,可以迅速发现火源并引导消防员迅速灭火,同时可协助搬运设备器材,也可以引导消防员迷路时顺利脱险。早稻田大学研发的一款环境监测机器人,可以通过传感器获得温度、湿度、PM2.5、辐射等环境数据,可使用手机操控机器人移动并设定数据获取周期。
美国SPRAYING SYSTEM公司和丹麦HARDI公司都研发了多种森林病虫害防治机器人,融合光机电一体化技术、计算机控制技术和“3S”技术,遵循靶标适应性原则,实现智能、精准、高效的病虫害防治。美国约翰迪尔公司研制的伐木联合机,集伐木、打枝、造材等功能于一体,可在陡坡和林地连续运动,计算机程序根据传感器反馈的路况信息控制步伐,生产效率高、安全、智能且对地表生物资源的破坏小。芬兰Ponsse公司研制的联合采伐机,搭配测试系统可测出原木的体积,并通过采伐机上最先进的整机程控系统完成采伐动作,同时记录故障反馈驾驶员。
欧美发达国家林地地形较好,林业装备多开展大规模作业,林业机器人具有大型化、多功能化的特点,其中日本林地总体数量少,林业装备多开展复杂地形精细化作业,林业机器人具有精细化、小型化的特点。
3.2 国内林业机器人发展现状
我国很多林业领域尤其是生态建设领域还停留在半机械化水平,还未完全达到机械化水平,随着技术发展,某些领域的林业装备已进入机器人时代,林业机器人理念孕育而生。
舒庆等研发的生态恢复机器人,通过铺设草方格来防风固沙,依据沙地地貌通过PLC控制铺设草方格机构的高度和插入压力,作业后将在沙地上形成草方格立体沙障,固沙能力很强,可提高铺设效率161倍,降低铺设成本80%左右。
褚佳等研发的用于葫芦科穴盘苗嫁接的抚育机器人,通过控制机械手完成取苗搬运、切苗、嫁接、输送等作业,每小时可嫁接455株,只需1人操作,嫁接成功率高达95%。李文彬等研发用于树木立木整枝的抚育机器人,通过人工遥控机器人移动至易于打枝处,控制悬臂式链锯对树木进行整枝,使树木达到良好的抚育效果。刘松等研发用于园林绿篱修剪的抚育机器人,通过图像采集系统获得实时信息,并依据绿篱的高度和生长分布,使用Atmega168单片机控制机器人进行修剪,实现自动化修剪,适应性强。
姜树海等研发的六足仿生森林消防机器人,可完成火灾巡检、清理、扑救等工作,灭火装置最大可伸展2.3 m,足部最大可伸展1.25 m,适合林地复杂环境工作。林凡强等在传统避障机器人上研发的灭火机器人,通过红外火焰传感器配合软件分析确定火焰的位置,避障机器人快速移动到着火点附近,控制灭火装置进行精确灭火。
汤晶宇等研发的森林病虫害防治机器人,采用超声感应装置进行检测,定向施药,精准防治病虫害,大幅提高了农药的利用率。
董勇志等研发的环境检测直立交互型机器人,采用多种传感器融合、UART触屏交互、双向PWM控制等多种技术,可实现环境监测、远程操控、报警等功能,监测数据全且智能化水平高。张慧颖研发的现场环境智能巡检机器人,配合使用多种传感器可以得到温度、CO浓度、温度等环境数据并通过NRF905与控制台进行无线传输,通过传感器融合模糊神经网络感知并避障,结构简单、测量准确且智能化程度高。
魏占国等设计的轮式林木采伐联合机器人CFJ-30,采用全液压驱动,集伐木、打枝、造材于一体,最大行驶速度可达25 km/h,最大工作距离可达10 m,工作效率很高。周中华等研发的毛竹联合采伐机,集伐竹、打枝、截梢、集材等功能于一体,成功改变了现行伐竹的工作方式,大幅提高了生产效率,减少了劳动成本,对我国竹业产业发展有着重要作用。
傅万四等研发的自动破竹机器人,实现了原竹段自动分级、自动对心、自动换刀、自动破竹和原竹中心矫正,通过测量竹筒外径,使用PLC系统控制选择合适的刀具进行破竹,破竹速度可达11.2 m/min,大大提高了工作效率,处于国际领先技术水平。
我国林业机器人处于起步阶段,尚未系统形成适合我国林业情况的机器人产学研体系。
4 林业机器人研究中存在的问题及发展趋势
4.1 存在的问题
目前我国林业机器人的研发大多处于试验阶段,由于各种原因尚无法普及,当前存在的主要问题如下。
1)林业工作环境复杂。我国林业生产经营多在偏远山区,工作环境复杂恶劣,林业机器人在工作时要面临林地坡度不一、沟壑复杂、障碍多等挑战,大型机器装备无法进入作业区,同时林地环境信号差,信号覆盖率低,对于林业机器人工作信息传输和处理有着一定的挑战,林地未经过宜机化改造,对机器人的适应性要求高,所以在推广中存在较大难度。
2)林业乔灌木栽种不规则。现阶段我国自然生长的林业乔灌木在林地呈散乱不规则分布,人工种植的乔灌木类型复杂,导致乔灌木等植被布局和生长不规则,对于林业机器人工作时的对象识别和处理易受外界因素的影响。林木生长不规则影响机器人在林地间连续行走,在一定程度上降低了连续化水平,同时不规则生长还会导致机器人在林间工作时破坏植被,影响生物多样性进而破坏生态。
3)开发难度大,生产成本高。相对于工业和农业来说,林业总体而言属于生态公益行业,林业产业产生的经济效益远小于工业和农业产业,致使更多的研发人员热衷于加入工业和农业机器人的研发行列,而且林业机器人售价高,导致推广困难。林业机器人虽有很大的市场潜力,但由于开发难度大、生产成本高,一定程度上抑制了其发展推广。
4)研发人才和平台缺乏。我国从事林业机器人方面的研发技术人员较少,行业科技领军人才和优秀拔尖人才稀缺,林业高校和科研院所未系统开设林业机器人课程,未建立林业机器人学科,导致对口人才较少,制约了林业机器人的发展。现阶段的林业企业大都是为了生产需要,把一些通用机械技术人员经过简单培训后即上岗,缺乏对林业行业工作对象的认知和基础知识学习,无法满足林业机器人的发展需求。科技创新平台是技术转移、技术研发、资源共享、孵化企业的重要基础设施,林业机器人的科技创新平台稀缺也是林业机器人发展缓慢的原因之一。
4.2 未来发展趋势
林业机械化是林业现代化的重要标志,林业机器人是代表林业机械化发展水平的重要标志。随着科技发展、劳动力减少、人口劳动结构的调整,发展林业机器人势在必行,将对我国林业技术革命和林业现代化发展起到积极重大的促进作用。
1)政府积极引导,加大科研投入。在国际农林机器人生产巨头公司看好中国市场、纷纷抢滩中国的背景下,我国对林业机器人制造业的扶持力度不足,尤其是针对适合我国林情的林业机器人的研发,政府和行业协会缺乏权威性的指导和协调,严重制约了我国林业机器人的发展和推广。相关部门应加大科技层面的投入,加强政策支持和市场引导,充分利用实施重点建设工程和调整振兴重点产业形成的市场需求,加快推进林业机器人生产研发自主化,同时重点扶持林业机器人龙头企业,优化创新人才成长环境,保障林业生产需要,带动林业机器人产业发展。政府可对购买林业机器人的用户发放购置补贴,进一步刺激内需,促进林业机器人的发展。
2)攻克共性关键技术。发展林业机器人需要优先发展相对应的关键技术,对引导国家重大项目支持和企业科技创新选择具有重要的指导作用和现实意义,更好地发展林业机器人还需突破以下关键技术:机器人在复杂林业环境中的连续运动控制技术;自动避障技术;对目标随机位置的准确感知和信息处理,机械手的准确定位,机械手抓取力度和姿态控制技术;对复杂目标的分类技术;对林业恶劣环境条件的适应技术;基于树木生理结构的自适应技术;山地林地自适应技术;人机交互技术;林业无人机信息获取及反馈技术等。
3)加强林地宜机化改造。“宜机化改造”是近年来针对农业提出的新概念,从最初的“梯田改造”到现在的“高标准农田建设”,对农业发展和机器人应用都是一大助力,就现阶段科技水平而言,让机器人去适应所有的农林地形有着很大难度,林业比农业环境更加恶劣、工作对象更加复杂、实现全机械化作业难度更大,“宜机化改造”更适合林业行业。林地实现宜机化是我国林业实现机械化和现代化的重要环节,推动宜机化改造对提高林业生产力、提高林业机器人的使用率和工作效率、实现可持续发展尤为重要,也是快速实现林业生产和经营机械化、智能化的另一途径。
4)重视人才培养,建立产学研技术体系。重视林业机器人行业人才培养是推动林业机器人发展非常重要的环节,人才是科学技术的载体,因此要重视培养林业机器人行业的人才,林业机器人所需的人才是多方面的,不仅要有产品开发和生产人才,还要有技术推广、维修、管理和使用人才,可在相关职业技术学院开设林业机器人制造管理维修职业教育;在农林高校开设林业机器人专业,进行林业机器人本科教育培养;在相关农林高校、科研院所培养林业机器人学科领域的硕士、博士研究生,形成完整的人才培养体系,以适应林业机器人的快速发展。同时加快林业机器人科技创新平台建设,以国家级科研单位牵头构建国家林业机器人重点实验室和工程技术中心,加速科技成果转化,建设完备的产学研用科研平台体系。
5)引进相关行业高端技术吸收、改造、创新。林业机器人产业属于高端制造业,其发展在一定程度上落后于工业和农业机器人,可以借鉴工业和农业机器人的发展历程,将已经发展颇好的工业和农业机器人引入林业生产中,并结合林业行业的特殊情况进行二次开发和改造,加速研发进程,依据改进后机器人的实地工作情况再结合我国林情研制出特属林业行业的机器人。同时吸引更多从事于工、农业机器人的研发和技术人员加入林业行业,引进、消化吸收、再创新,给林业机器人发展注入强大活力,助林业机器人更快追上时代发展。
6)加强国际合作。国外农林业机器人发展水平普遍高于我国,要坚持实施“请进来、走出去”战略,引进国外农林业机器人研发人员长期或短期到国内开展科研合作交流并形成长效机制,同时派遣科研人员或留学生赴国外机构合作研究,共建林业机器人国际创新团队,搭建林业机器人国际研究平台,积极吸收国外先进技术,促进我国林业机器人创新,扶持有国际竞争力的林业机器人企业努力开拓国际市场,与国际接轨。
本文源自中国吉林森工集团网站
相关问答
无线收发芯片 nrf 24l01或者 nrf905 等都是工作在3V电压下,而51 单片机 引脚电压都是5V?构成收发系统肯定是不行的。但是单片机可以直接和两种芯片直连,那是没问题的!两种芯片的电压、只能是3.3v,不能大了!会烧坏的单片机直接给5v就行!祝你好运...