一款基于单片机的智能温度预警系统
随着社会的发展特别是工业的发展,人民生活的改善,安全问题变得更加重要。目前,在许多情况下,都需要对环境的温度进行限定,其中包括人的生活工作环境、仪器设备的工作环境以及动植物的生长环境等。
如果环境温度超过或低于限定值,必定对所处环境的人和设备造成影响,甚至给个人和社会造成巨大的损失。随着单片机技术的飞速发展,利用单片机设计温控系统成为控制技术发展的需要。本文提出了一种基于单片机的温度预警系统的设计方案,并采用PROTEUS进行了仿真。该系统不仅可以高精度的测量温度,同时对温度进行实时监控并做到超温报警,有较高的实用价值。
2.系统设计的总体方案
本设计方案总体框图如图1所示,它是由单片机、四路数据采集模块、集成功放模块、人机交互界面和系统电源等组成。
本设计系统以AT89C52单片机作为控制核心,数据采集部分由温度传感器DS18B20组成;人机交互界面为4×4矩阵键盘输入和LCD1602液晶显示,可以方便的输入数据和直观的显示。系统电源为+5V电源供电。软件部分采用C语言进行编程,实现了该设计的全部控制功能。该温度预警系统的测量范围为-55℃~+125℃。当检测的温度高于最高或最低温度设定值时,实现报警功能。
3.电路设计
3.1 单片机
AT89S52单片机是ATMEL公司推出的高档型AT89S系列单片机中的增强型产品。AT89S52是一个低功耗、高性能CMOS8为单片机,片内含8K Bytes ISP的可反复擦写1000次的Flash只读程序存储器。期间采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS-51指令系统及80C51引脚结构。芯片内集成了通用8位中央处理器和ISP Flash存储单元,功能强大的微型计算机的AT89S52可为许多嵌入式控制应用系统提供高性价比的解决方案。
3.2 温度采集电路
由单片机获取非电信号的温度信息,必须通过温度传感器。传统的温度测量多以热敏电阻作为温度传感器,但是,热敏电路可靠性较差,测量温度精度低,因此使用DS18B20温度传感器采集温度。DS18B20是美国达拉斯(Dallas)公司的单数字温度传感器芯片,DS18B20具有体积小,功耗低,抗干扰能力强,易于微处理器连接等特点,其测量范围-55℃~+125℃,最大分辨率为0.0625℃,在-25℃~+85℃范围内其测温标准度为±0.5℃。
DS18B20只有三个引脚,一个接地,一个接电源,一个数字输入/输出引脚,由于DS18B20采用单总线结构,本系统的四个温度传感器并联在三线上,数据输入/输出接单片机的P1.7口,电源与数字输入输出脚间需要接一个4.7K的电阻,实现多点组网功能。
3.3 报警电路设计
本系统报警电路使用L M 3 8 6作为报警器的功率放大器。LM386是一种音频集成功放,具有自身功耗低、电压增益可调整、电源电压范围大、外接元件少和总谐波失真小等优点,广泛应用于录音机和收音机之中。
LM386的输入端接单片机的P3.4引脚,输出端接扬声器,电路图如图2所示。当实际温度超过或低于设置的温度值时,单片机相应引脚输出一定频率的信号,信号经过音频功放放大之后,发出报警声。
3.4 显示接口电路设计
系统采用液晶显示模块来显示4路温度采集值及温度设定值。本系统采用LCD12864液晶显示模块。LCD12864是一种具有4位/ 8位并行、2线或三线串行多接口方式,内部含有国际一级、二级简体中文字库的点阵图形液晶显示模块,其显示分辨率为128×64,可以显示8×4行16×16点阵的汉字。同时又具有低电压低功耗等特点。
在本系统,LCD12864的3个控制端RS(数据/命令选择端)、R/W(读/写选择端)、E(使能信号)分别连接单片机的P 3 . 7、P3.0、P3.3,用来对LCD12864进行控制;LCD12864的8个数据端连接单片机的P0口,用来向LCD12864写入数据。液晶的第3引脚为液晶显示偏压信号,用来调节显示的对比度;第1、2引脚为液晶的电源接口;第19、20引脚是显示器背光灯的电源接口。
3.5 键盘接口电路设计
键盘在单片机应用系统中能够实现向单片机输入数据、传送命令等功能,是人干预单片机的主要手段。本系统采用了4×4矩阵键盘实现对温度值和功能键的设定。四条行线接单片机P2口的高4位,四条列线接单片机P2口的低4位。初始化时键盘行线为高电平,列线为低电平。键盘的行线接4输入与门,4输入与门的输出接单片机的外部中断0引脚P3.2口。当有键按下时,将产生中断,在中断程序里对按键进行扫描,得到按键的键值。
3.6 电源电路的设计
电源是整个系统的能量来源,它直接关系到系统能否运行。在本系统中单片机、液晶显示、报警等电路需要5V的电源,因此电路中选用稳压芯片7805,其最大输出电流为1.5A,能够满足系统的要求。
4.软件设计
主程序先对系统资源进行初始化,调用LCD显示子程序,然后进入键盘设置界面。
当设置键按下后,开始设置各点的温度,如果确认键按下,则系统开始工作。首先调用DS18B20初始化子程序,再发送ROM命令,读取DS18B20转换的温度值。当读取的温度大于设置的温度值时,报警器开始报警,LCD显示温度的实际值、设置值、路数、状态。
接下来对第二、三、四路温度进行采集,处理,显示。
5.系统PROTEUS仿真
Proteus 软件是来自用过LabcenterElectronics公司,基于SPICEF5 仿真引擎的很合电路仿真软件,是一款含有大量的系统资源、丰富的硬件接口电路,具有强大的调试功能和软硬件相结合的仿真系统。它很好地解决了硬件设计和软件调试的问题,不仅能够仿真模拟、数字电路以及模数混合电路,还能够仿真基于单片机的电子系统。本系统PROTEUS仿真图如图3所示。
6.结论
本方案以AT89C52为控制核心,DS18B20采集温度、LCD12864显示温度和LM3386驱动报警等设计了一款智能温度预报警系统,并通过PROTEUS仿真,得到了很好的效果,证实了本系统具有结构简单、功耗低、智能调节等优点。本系统可以应用于粮仓、工厂、浴室等场合,具有很强的实用价值。
基于机智云物联网平台的多功能大棚设计
基于机智云物联网平台的多功能大棚设计
文/李江勇 纪力尧 林晓智
潍坊技术学院
摘要:本文设计并制作了一款基于机智云物联网平台的多功能大棚的控制系统并制作了实物模型。本系统可通过网页端查看历史操作数据,通过手机APP进行对大棚的远程操作。物联网控制可实现远距离对大棚的各种功能的操作,无距离限制。设备配有网络摄像头,可远程观看大棚状态,使农业更加智能化。
【关键词】物联网 前屈伸臂式卷帘机 多点放风机构 PID 恒温 多点温度采集
1 硬件结构
1.1 主控芯片及数据显示采 用 性 能 高、 功 耗 低 的 32 位微控制器 STM32F429 作 为 主 控 芯 片, 主 频 高 达180MHz,能够进行比较高速的运算,使其能和物联网模块进行即时通讯,减少数据丢包的可能。数据显示采用 TFTLCD 电容触摸屏,该触摸屏屏幕分辨率为 800*480,16 位真彩显示,采用 NT35510 驱动,无需外加驱动器,可直接连接单片机进行驱动,屏幕刷新速度可达 78.9 帧 / 秒。
1.2 esp8266_12F WIFI芯片该模块核心处理器 ESP8266 在较小尺寸封装中集成了业界领先的 Tensilica L106 超低功耗 32 位微型 MCU,带有 16 位精简模式,主频支持 80 MHz 和 160 MHz,支持 RTOS,集成 Wi-Fi MAC/BB/RF/PA/LNA 板载天线。
1.3 前屈伸臂式大棚卷帘机构在进行机械结构设计方面,采用独特的前屈伸臂式卷帘机进行对卷帘的驱动,由变速箱和电动机,卷杆和支架三大部分组成,作业原理是经过主机转动卷杆,卷杆直接拉动草苫或保温被,而且拉放均有动力支撑,市场广泛应用。
1.4 多点放风机构放风机构目前棚户大多使用拉线式放风,需要人不断查看棚内的温度以进行大棚放风机构的拉开与关闭,而且放风机构是一体的。本设备的放风机构采用同步带传动带动风口动作,方便快捷,设有两处放风口,当棚内某点温度过高时,可只开启其中一个放风口进行通风降温,而另一处则不用开启,当达到棚内温度设定值时自动关闭放风口或者手机 APP操作关闭,多点的放风机构可有效的控制大棚温度。
设备整体效果图
1.5 多点温度采集目前大棚温度单点采集过于落后,所谓单点采集,就是将 ds18b20 的 DQ 与单片机的一个管脚相连,而多点采集就是将多个 ds18b20并联,因为每个 ds18b20 都有一个独特的 64位序列号,从而允许多个 ds18b20 同时连在一根单总线上。单片机依靠每个温度传感器独有的 64 位片序列号辨认总线上的器件,根据序列号分别进行采集,匹配序列号的程序如 下:void Match_rom(u8 a)// 匹 配 ROM{u8j;DS18B20_Write_Byte(0x55);if(a==1){for(j=0;j<8;j++) D S 1 8 B 2 0 _Write_Byte(ROM1[j]);}if(a==2){for(j=0;j<8;j++) D S 1 8 B 2 0 _Write_Byte(ROM2[j]);}if(a==3){for(j=0;j<8;j++) D S 1 8 B 2 0 _Write_Byte(ROM3[j]);}}
1.6 PID恒温及网络摄像头有效的控制大棚温度对植物的生长是极其重要的,故采用 PID 恒温方式控制执行器件电热丝进行对大棚温度的控制,本设备可在手机 APP 界面进行温度设置。本设备装有网络摄像头,可通过手机APP查看大棚的状态,摄像头亦采用物联网模式,可不受距离限制,随时随地查看,真正实现智能化农业。
1.7 供电方式考虑到制作的为大棚模型,为方便搬运以及不用市电供电,本设备的供电方式采用的是12V蓄电池供电。当本设备应用于实际大棚时,可采用市电 220V 转 12V 的 60W 的开关电源供电,安全可靠。
2 软件设计
2.1 设备与机智云物联网平台的数据交互流程 使用移植机智云GAgent 的 Wi-Fi 模组建立桥梁,使本设备的数据与机智云互联互通。 设备与机智云数据交互的基本数据流。
2.2 Wi-Fi模块传输协议处理
Wi-Fi 芯片与 STM32 的通讯方式为UART,波特率为 9600。传输字节序采用大端编码,即高字节在前,低字节在后,通讯的交互形式采用一问一答,即每条命令需要由接收方给出 ACK 应答确认信息,超时时间为200ms,超时后重发该命令,发送 3 次后不再尝试发送,丢弃该包数据。数据指令由包头(2B)、包长度(2B)、命令(1B)、包序号(1B)、Flags(2B)、有效负载以及校验和(1B)组成。
发送通用协议消息数据程序如下:static int32_t gizProtocolCommonAck(protocolHead_t *head){int32_t ret = 0;protocolCommon_t ack; i f ( N U L L = = head){G I Z W I T S _ L O G ( " E R R :gizProtocolCommonAck data is empty \n");return-1;}memcpy((uint8_t *)&ack, (uint8_t *)head,sizeof(protocolHead_t));ack.head.cmd = ack.head.cmd+1;ack.head.len = exchangeBytes(sizeof(protocolCommon_t)-4);ack.sum = gizProtocolSum((uint8_t *)&ack,sizeof(protocolCommon_t));r e t = u a r t Wr i t e ( ( u i n t 8 _ t * ) & a c k ,sizeof(protocolCommon_t));if(ret < 0){GIZWITS_LOG("ERR: uartwrite error %d \n", ret);}return ret;}
2.3 电机驱动电路及程序控制本设备大棚卷帘机的驱动电机采用的为直流减速电机,通过控制两个端口的信号输入,则可控制大棚卷帘机的打开与关闭。
电路设计图
其驱动程序如下:case EVENT_JUANLIAN: // 卷帘currentDataPoint.valueJUANLIAN =dataPointPtr->valueJUANLIAN;GIZWITS_LOG("Evt: EVENT_JUANLIAN%d \n", currentDataPoint.valueJUANLIAN);if(shou==0){if(0x01 == currentDataPoint.valueJUANLIAN){juan=1;HAL_GPIO_WritePin(GPIOC,GPIO_PIN_1,GPIO_PIN_RESET);HAL_GPIO_WritePin(GPIOC,GPIO_ PIN_6,GPIO_PIN_SET);}else{juan=0;HAL_GPIO_WritePin(GPIOC,GPIO_PIN_1,GPIO_PIN_RESET);HAL_GPIO_WritePin(GPIOC,GPIO_PIN_6,GPIO_PIN_RESET);}} break;
3 结语
本文所要制作的设备是在大棚发展过程中与现实科技相结合的成果。在越来越智能化,信息化的今天,大棚的物联网时代逐渐进入人们的视线,在经过多次实地调研后,加入了上述的功能,以后根据实际产生的问题,可进一步加入到本设备中,具有二次开发能力,真正实现大棚物联网时代的开发与应用。
参考文献[1] 孙 光 宇 , 张 玲 玲 编 著 .Android 物 联 网开发从入门到实战 [M]. 清华大学出版社 ,2014.[2] 刘军编著 . 物联网技术 [M]. 机械工业出版社 ,2007.[3] 刘 火 良 , 杨 森 编 著 .STM32 库 开 发 实 战指南 - 基于 STM32F4[M]. 机械工业出版社 ,2011.
关于机智云
机智云AIoT自助开发平台提供多种在线自动开发工具、多型号Gagent固件(Wi-Fi、GPRS、4G等主流联网方式的固件)、[color=var(--weui-LINK)]多型号MCU代码自动生成器(51、STM32、arduino等)、[color=var(--weui-LINK)]开源跨平台APP SDK(iOS、Android、APiCloud)、[color=var(--weui-LINK)]开源案例和在线教程,以及社区及FAE支持,帮助开发者0成本、快速实现IoT设备远程控制、数据采集分析、设备及用户管理等应用开发,详见:www.gizwits.com
相关问答
基于51 单片机的温度 控制器_汽配人问答[最佳回答]图片为温度控制电路图。温度到达上限时led灯亮,并停止对RT的加热,温度达到下限时led灯灭并开始对RT进行加热。A1和A2为uA741运算放大器。引脚号在图...
【 基于单片机的 玻璃窑炉 温度 自动控制系统设计翻译成英文】作业帮[最佳回答]GlassfurnacetemperatureAuto-controlsystemdesignbasedonMCU
【基于AT89S52 单片机的 电子万年历的设计与制作,的目的和意义...基于AT89S52单片机的电子万年历的设计与制作,的目的和意义,急求!技术指标:1、用液晶显示年月、日、星期、时、分、秒,阴历、运行时间、温度.2、具有年、月...
温度 传感器怎么与 单片机 连在一起工作?第一要完成温度传感器与单片机的硬件连接:(1)温度传感器是将非电量转换为电量即温度转换成电压(一般电压值较小为毫伏级的)因此需要加一级运算放大电路...
protues7.8 单片机温度 检测?Proteus7.8单片机温度检测是基于51单片机的温度监控仿真设计,程序编译器为keil4/5,编程语言为C语言。该设计主要功能有:显示温度0-99,上电默认高温报警35...
单片机温度 报警器用的哪种传感器分辨率多少?要一条口...(1)适应电压范围更宽,电压范围:3.0~5.5V,寄生电源方式下可由数据线供。(2)独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实...
单片机 可分为商用,工业用,汽车用以及军用产品,它们的使用 温度 范围各为多少?按温度适应能力及可靠性分为四类:商业级(0~70摄氏度)、工业级(-40~85摄氏度)、汽车级(-40~120摄氏度)军工级(-55~150摄氏度)一般区分都是按芯片型号的后...按...
双重温控是什么意思?单温控的使用:单温控的使用环境为温度-10℃~45℃。单温控的功能:本控制器为单制冷温度控制器,具有压缩机开机延时保护、温控探头故障告警功能。2、双温控的...
在加热设备上的 温度 通过数字显示,是什么原理?温度传感器与显示屏是怎样实现的?原理是:温度探头受温度影响自身阻止发生变化,然后通过模数转换块转变为数字信号。温度显示表一般为单片控制,单片机再把数...在加热设备上的温度通过数字显...
怎么用labview编写 单片机 烧写程序-ZOL问答在单片机开发过程中,从硬件设计到软件设计几乎是开发者针对本系统特点亲自完成的。这样虽然可以降低系统成本,提高系统的适应性,但是每个系统的调试占去了总开...