详解51单片机基本硬件结构
硬件结构
单片机的内部结构是由CPU、ROM、RAM等组成,现在介绍外部引脚。如图1-3所示为单片机的引脚图,这就是实验中要用的89C51单片机的外部引脚图。如表1-3所示为89C51单片机引脚分配表。
图1-3 89C51单片机的引脚图
表1-3 89C51单片机引脚分配表
端口结构分析
从1.3.1节的硬件结构中可以看出,89C51单片机总共有4组端口,P0、P1、P2和P3,了解这4组端口的结构原理对于日后的编程会有很大的帮助,由于这4组端口结构不尽相同,下面分别介绍单片机总的4组端口。由于每组端口都是由8位组成,故在下面的讲解中,只以每组端口的其中一位来解释。
1. P0口的结构及工作原理
P0口字节地址为80H,位地址80H~87H。P0端口8位中的一位结构图如图1-4所示。
图1-4 P0端口位结构图
由图1-4可见,P0端口由锁存器、输入缓冲器、多路开关、一个非门、一个与门及场效应管驱动电路构成。图1-4中标号为P0.X引脚的图标,表示引脚可以是P0.0~P0.7的任何一位,即在P0口有8个与图1-4所示相同的电路组成。下面先介绍组成P0口的每个单元部分。
(1)输入缓冲器
在P0口中,有两个三态的缓冲器,学过数字电路的读者都知道三态门有3个状态,即在其输出端可以是高电平、低电平,同时还有一种高阻状态(或称为禁止状态),图1-4中,上面一个是读锁存器的缓冲器,也就是说,要读取D锁存器输出端Q的数据,需要使读锁存器中这个缓冲器的三态控制端(图1-4中标号为“读锁存器”端)有效,下面一个是读引脚的缓冲器,要读取P0.X引脚上的数据,也要使标号为“读引脚”的三态缓冲器的控制端有效,引脚上的数据才会传输到单片机的内部数据总线上。
(2)D锁存器
构成一个锁存器,通常要用一个时序电路(时序的单元电路内容请参考数字电路相关知识),一个触发器可以保存一位二进制数(即具有保持功能),在51单片机的32根I/O口线中,都是用一个D触发器来构成锁存器的。图1-4中的D锁存器,D端是数据输入端,CP是控制端(即时序控制信号输入端),Q是输出端,
是反向输出端。
对于D锁存器来讲,当D输入端有一个输入信号,如果这时控制端CP没有信号(即时序脉冲没有到来),这时输入端D的数据是无法传输到输出端Q及反向输出端
的。如果时序控制端CP的时序脉冲到达,这时D端输入的数据就会传输到Q及
端。数据传送过来后,当CP时序控制端的时序信号消失时,输出端还会保持着上次输入端D的数据(即把上次的数据锁存起来)。如果下一个时序控制脉冲信号到来,这时D端的数据才再次传送到Q端,从而改变Q端的状态。
(3)多路开关
在51单片机中,当内部的存储器够用时(即不需要外扩展存储器时,这里讲的存储器包括数据存储器及程序存储器),P0口可以作为通用的输入/输出端口(即I/O)使用,对于8031(内部没有ROM)的单片机,或者编写的程序超过了单片机内部的存储器容量需要外扩存储器时,P0口就作为地址/数据总线使用。那么这个多路选择开关就是用于选择是作为普通I/O口使用还是作为地址/数据总线使用的选择开关了。从图1-4可知,当多路开关与下端接通时,P0口作为普通的I/O口使用;当多路开关是与上端接通时,P0口作为地址/数据总线使用。
(4)输出驱动
从图1-4中可看出,P0口的输出是由两个MOS管组成的推拉式结构,也就是说,这两个MOS管一次只能导通一个,当Vl导通时,V2截止,当V2导通时,Vl截止。
上面已对P0口的各单元部件进行了详细的讲解,下面研究一下P0口作为I/O口及地址/数据总线使用时的具体工作过程。
(1)作为I/O端口使用时的工作原理
P0口作为I/O端口使用时,多路开关的控制信号为0(低电平),如图1-4所示,多路开关的控制信号同时和与门的一个输入端相接,与门的逻辑特点是“全l出1,有0出0”,那么控制信号如果是0,这时与门输出的也是一个0(低电平),此时Vl管就截止,在多路控制开关的控制信号是0(低电平)时,多路开关是与锁存器的端相接的(即P0口作为I/O口线使用)。
P0口用作I/O口线,其由数据总线向引脚输出(即输出状态Output)的工作过程:写锁存器信号CP有效,数据总线的信号的输出流程为锁存器的输入端D→锁存器的反向输出
端→多路开关→V2管的栅极→V2管的漏极→输出端P0.X。前面已经介绍过,当多路开关的控制信号为低电平0时,与门输出为低电平,Vl管是截止的,所以作为输出口时,P0是漏极开路输出状态,类似于OC门,当驱动上接电流负载时,需要外接上拉电阻。如图1-5所示就是由内部数据总线向P0口输出数据的流程图。
图1-5 P0口内部数据总线向引脚输出时的流程图
P0口用作I/O口线,其由一引脚向内部数据总线输入(即输入状态Input)的工作过程,数据输入时(读P0口)有以下两种情况:
第一种情况是读引脚,即读芯片引脚上的数据。读引脚数时,读引脚缓冲器打开(即三态缓冲器的控制端要有效),通过内部数据总线输入。如图1-6所示为P0口读引脚时的流程图。
图1-6 P0口读引脚时的流程图
第二种情况是读锁存器,通过打开读锁存器三态缓冲器读取锁存器输出端Q的状态。如图1-7所示为P0口读锁存器时的流程图。
图1-7 P0口读锁存器时的流程图
在输入状态下,从锁存器和从引脚上读取的信号一般是一致的,但也有例外。例如,当从内部总线输出低电平后,锁存器Q=0,
=l,场效应管V2开通,端口线呈低电平状态,此时无论端口线上外接的信号是低电平还是高电平,从引脚读入单片机的信号都是低电平,因而不能正确地读入端口引脚上的信号。又如,当从内部总线输出高电平后,锁存器Q=1,
=0,场效应管V2截止,如果外接引脚信号为低电平,从引脚上读入的信号就与从锁存器读入的信号不同。为此,8031单片机在对端口P0~P3的输入操作有如下约定:凡属于读—改—写方式的指令,从锁存器读入信号,其他指令则从端口引脚线上读入信号。读—改—写指令的特点是,从端口输入(读)信号,在单片机内加以运算(修改)后,再输出(写)到该端口上。下面是几条读—改—写指令的示例。
ORL P0, A P0→AP0
INC P1 P1+1→P1
DEC P3 P3-1→P3
CPL P2 P2→P2
这样安排的原因在于读—改—写指令需要得到端口原输出的状态,修改后再输出,读锁存器而不是读引脚,可以避免因外部电路的原因使原端口的状态被读错。
注意: P0端口是8031单片机的总线口,分时出现数据D7~D0、低8位地址A7~A0以及三态,用来连接存储器、外部电路与外部设备。P0端口是使用最广泛的I/O端口。
(2)作为地址/数据复用口使用时的工作原理
在访问外部存储器时,P0口作为地址/数据复用口使用,这时多路开关控制信号为l,与门解锁,与门输出信号电平由地址/数据线信号决定;多路开关与反相器的输出端相连,地址信号经地址/数据线→反相器→V2场效应管栅极→V2漏极输出。例如,控制信号为l,地址信号为0时,与门输出低电平,Vl管截止;反相器输出高电平,V2管导通,输出引脚的地址信号为低电平。如图1-8所示为P0口作为地址线,控制信号为1,地址信号为0时的工作流程图。
图1-8 P0口作为地址线,控制信号为1,地址信号为0时的工作流程图
反之,控制信号为l、地址信号为l,与门输出为高电平,Vl管导通;反相器输出低电平,V2管截止,输出引脚的地址信号为高电平。如图1-9所示为P0口作为地址线,控制信号为1,地址信号为1时的工作流程图。
图1-9 P0口作为地址线,控制信号为1,地址信号为1时的工作流程图
可见,在输出地址/数据信息时,Vl、V2管是交替导通的,负载能力很强,可以直接与外设存储器相连,无须增加总线驱动器。P0口又作为数据总线使用,在访问外部程序存储器时,P0口输出低8位地址信息后,将变为数据总线,以便读指令码(输入)。在存取指令期间,控制信号为0,Vl管截止,多路开关也跟着转向锁存器反相输出端
;CPU自动将0FFH(11111111,即向D锁存器写入一个高电平1)写入P0口锁存器,使V2管截止,在读引脚信号控制下,通过读引脚三态门电路将指令码读到内部总线。如图1-10所示为P0口作为数据总线,取指期间工作流程图。
图1-10 P0口作为数据总线时取指期间工作流程图
如果该指令是输出数据,如“MOVX@DPTR,A”,该指令将累加器的内容通过P0口数据总线传送到外部RAM中,则多路开关控制信号为1,与门解锁,与输出地址信号的工作流程类似,数据由地址/数据线→反相器→V2场效应管栅极→V2漏极输出。
如果该指令是输入数据(读外部数据存储器或程序存储器),如“MOVX A,@DPTR”,该指令将外部RAM某一存储单元内容通过P0口数据总线输入到累加器A中,则输入的数据仍通过读引脚三态缓冲器到内部总线,其过程类似于读取指令码流程图。
通过以上分析可以看出,当P0作为地址/数据总线使用时,在读指令码或输入数据前,CPU自动向P0口锁存器写入0FFH,破坏了P0口原来的状态。因此,不能再作为通用的I/O端口。
注意: 系统设计中务必注意,程序中不能再含有以P0口作为操作数(包含源操作数和目的操作数)的指令。
当由P0口输入数据时,由于外部输入信号既加在缓冲输入端上,又加在驱动电路的漏极上。如果这时T2是导通的,则引脚上的电位始终被钳位在0电平上,输入数据不可能被正确地读入。因此,在输入数据时,应先把P0口置1,使两个输出FET均关断,使引脚“浮置”,成为高阻状态,这样才能正确地插入数据,这就是准双向口。
I/O口作为输入口时有两种工作方式,即读端口与读引脚,读端口时实际上并不从外部读入数据,而是把端口锁存器的内容读入到内部总线,经过某种运算或变换后再写回到端口锁存器,只有读端口时才真正地把外部的数据读入到内部总线,图1-10中的两个三角形表示的就是输入缓冲器,CPU将根据不同的指令分别发出读端口或读引脚信号以完成不同的操作,这是由硬件自动完成的。读引脚时,就是把端口作为外部输入线时,首先要通过外部指令把端口锁存器置1,然后再进行读引脚操作,否则就可能读入出错,为什么?看图1-10中,如果不对端口置1,端口锁存器原来的状态有可能为0,Q端为0,
端为1,加到场效应管栅极的信号为1,该场效应管就导通,对地呈现低阻抗,此时即使引脚上输入的信号为1,也会因端口的低阻抗而使信号变低,使得外加的1信号读入后不一定是1,若先执行置1操作,则可以使场效应管截止,引脚信号直接加到三态缓冲器中,实现正确的读入,由于在输入操作时还必须附加一个准备动作,所以这类I/O口被称为准双向口,89C51的P0、P1、P2、P3口作为输入时都是准双向口。接下来再看另一个问题,从图1-10中可以看出,这4个端口还有一个差别,除了P1口外,P0、P2、P3口都还有其他功能,这些功能又作什么用的呢?下面就来详细讲解这个问题。
每个I/O端口都有一个8位数据锁存器和两个8位数据缓冲器。P0~P3(8位锁存器)是SFR,有各自的端口地址,可直接用指令寻址,用于存放需要输出的数据。数据输入时只有缓冲没有锁存,各引脚上输入的数据必须一直保持到CPU将其读走为止,如图1-11所示为P0位结构图。
图1-11 P0位结构图
从图1-11中可以看出,P0口的内部有一个二选一的选择器,受内部信号的控制,如果在图1-11中的位置,则处在I/O口工作方式,此时相当于一个准双向口输入,须先将P0口置1,每根口线可以独立定义为输入或输出,但是必须在口线上加上拉电阻,如果将开关拨向另一个方向,则作为地址/数据复用总线用,此时不能逐位定义为输入/输出,有两种用法,当作数据总线用时输入8位数据,当作地址总线用时则输出低8位地址,注意,当P0口作为地址/数据复用总线用之后就不能再作I/O口使用了。那么什么叫做地址/数据复用?这其实是当单片机的并行口不够用时需要扩展输入/输出口时的一种用法,具体使用方法会在后续的章节中逐步讲解。
利用P0口进行扩展外部存储器和I/O时,P0口将作为地址和数据分时复用,CPU发控制信号,打开与门,使MUX打向上边,形成推拉式结构,数据信号可直接读入或输出到内部总线。利用P0作为通用I/O时,此时P0口是一个准双向口,CPU发控制信号,封锁与门,使上拉管截止,MUX打向下边,与D触发器Q连接。
输入程序举例:
MOV P0, #FFH
输出程序举例:
MOV A, P0
2. P1口的结构及工作原理
P1口字节地址为90H,位地址为90H~97H,如图1-12所示为P1位结构图。
图1-12 P1位结构图
与P0不同,P1口只能作为I/O口使用,无MUX,但其内部有一个上拉电阻,所以连接外围负载时不需要外接上拉电阻,这一点P1、P2、P3都一样。
输入程序举例:
MOV P1, #FFH
MOV A, P1
输出程序举例:
MOV A, P1
3. P2口的结构及工作原理
P2口字节地址为A0H,位地址为A0H~A7H,如图1-13所示为P2位结构图。
图1-13 P2位结构图
P2口作为I/O口线时用法与P0口一样,当内部开关拨向另一个方向,即作地址输出时,可以输出程序存储器或外部数据存储器的高8位地址,并与P0口输出的低地址一起构成16位的地址线。
注意: 和数据总线的区别,数据总线是8位的,很多书上都会提到51单片机是8位数据总线,16位地址总线,但都不会解释有什么不同,看到这里读者应该明白二者的区别。
16位的地址总线可以寻址64KB的程序存储器或外部数据存储器,后续章节会讲解,此处要注意的是当P2口作为地址总线时,高8位地址线是8位一起输出的,不能像I/O口线那样逐位定义,这与P0口是一样的。
当P2口用来扩展外存储器和I/O时,作为高8位地址输出,当进行外部存储器或I/O设备读写操作时,CPU自动发出控制信号,打开与门,使MUX拨向上边。当P2口当作通用I/O时,CPU自动发出控制信号,MUX拨向下边,与D触发器Q连接。
输入程序举例:
MOV P2, #FFH
MOV A, P2
输出程序举例:
MOV A, P2
4. P3口的结构及工作原理
P3口字节地址为B0H,位地址为B0H~B7H。如图1-14所示为P3位结构图。
图1-14 P3位结构图
P3口作为I/O口线用时同其他的端口相同,也是准双向口,不同的是,P3口的每一位都有另一种功能,也叫第二功能,具体作用在用到时将详细解释。当P3口作为通用I/O口时,准双向口第二功能端保持高电平。
输入程序举例:
MOV P3, #FFH
MOV A, P3
输出程序举例:
MOV A, P3
当P3口作为第二功能时,锁存器输出Q=1,如表1-4所示为P3口第二功能列表。
表1-4 P3口第二功能列表
既然单片机的引脚有第二功能,那么CPU是如何识别的呢?这是一个令许多初学者困惑的问题,其实单片机的第二功能是不需要人工干预的,也就是说只要CPU执行到相应的指令,就自动转成了第二功能。
思考: 输入和输出口简称I/O口,是单片机与外部电路接口的唯一途径,4个并行口的结构是有一定区别的,如何根据系统的设计要求和产品用途来正确灵活地使用是初学者必须掌握的基本功,还需要清楚其功能和用途。
5. 应用注意事项
(1)在无片外扩展存储器的系统中,这4个端口的每一位都可以作为准双向通用I/O端口使用。在具有片外扩展存储器的系统中,P2口作为高8位地址线,P0口作为双向总线,分时作为低8位地址和数据的输入/输出线。
(2)P0口作为通用双向I/O口使用时,必须外接上拉电阻。
(3)P3口除了作通用I/O口使用外,各位还具有第二功能。当P3口某一位用于第二功能作输出时,则不能再作通用I/O口使用。
(4)当P0~P4端口用作输入时,为了避免误读,都必须先向对应的输出锁存器写入1,使FET截止,然后再读端口引脚,例如以下程序:
MOV P1, #0FFH
MOV A, P1
C51单片机程序的编写与总结3
自己的学习总结文档,有些乱,勿怪
1、51单片机的延时计算
void Delay10us()//@12.000MHz
{
unsigned char i;
_nop_();
_nop_();
i = 27;
while (--i);
}
上面这段代码是用STC-ISP软件中的软件延时计算器给出的,选用的是8051指令集STC-Y5,延时10us。
以前都是直接这么拿来用的,今天却突然想搞个明白,为什么代码要这么写。
于是查了各方资料。
从单片机计时的源头找起,它由下面几部分依次组成。
首先是时钟周期的算法:时钟周期(T)=1(秒)/晶振频率。
(比如:上面代码的时钟周期为1/12M(秒))。
这是单片机的基本时间单位。是由晶振震荡出来的,也叫震荡周期。
其次是机器周期:机器周期是由时钟周期组成的,机器周期是单片机完成一个基本操作所需要的时间。
关于机器周期,每种单片机可能都不太一样,我也只用过传统51和STC这两款,就拿此来对比下
1 传统的8051单片机:
它的1个机器周期是由12个时钟周期组成的。
以12M晶振举例,它的一个机器周期就是:12(个时钟周期)*1(秒)/12MHz = 1(us)
2 STC单片机:
拿我常用的STC12C5A60S2这款单片机来讲,它可以有两个模式选择,
一个是1T模式,在这个模式下STC单片机1个时钟周期就是1个机器周期;
另一个是12T模式,这个模式下STC单片就和传统的8051单片机一样,12个时钟周期组成1个机器周期。
由此可见1T模式的速度就是12T模式的12倍。
以12M晶振为例,1T模式下就可以算得机器周期是:
1(个时钟周期)*1(秒)/12Mhz = 1/12(us)
最后是指令周期:这个是单片机执行一条指令所需要的时间,它是由机器周期组成的。
现在可以回到正文开头的代码中了。这个10us的函数是怎么得出来的呢?
这个我之前查过很多资料,比如执行while语句需要多少个机器周期。赋值需要多少个周期。也就是查这个占用了我很大一部分时间。直到最后将上面的延时函数直接调到main函数中debug调试,才明白,问题其实很简单啊。
无论是执行什么语句,最终都会回到汇编上来,debug里单步调试,所有的指令周期就会明明白白了。
我用main函数直接调用延时函数,如下:
void Delay10us()//@12.000MHz
{
unsigned char i;
_nop_();
_nop_();
i = 27;
while (--i);
}
main
{
Delay10us();
}
我用的keil软件,将上述build之后,点击debug,开始调试
看图片上,开始debug,程序的起始就在C:0x0183 020171 LJMP Delay10us(C:0171),
这里有个长转移指令LJMP,它要转移到C:0171行去执行Delay10us这个函数。
那执行LJMP这个指令需要多长时间呢,查找STC数据手册,在1T模式下,此条指令在单片机上运行需要4个时钟周期。
接下来,按单步调试F11键,如下图:
程序成功转移到C:0171行,跳转到Delay10us函数中,此行程序执行NOP指令,空操作。查STC数据手册,NOP指令占用1个时钟周期。
接下来C:0172行,依然是NOP指令,1个时钟周期。
接下来C:0173行,此行执行 MOV R7,#0x1B,将立即数送入寄存器。是将27赋值给i。依然查手册,此条指令2个时钟周期。
继续:
此时执行到while语句了,这里执行的指令时 DJNZ R7,C:0175,寄存器减1非0转移。此条指令执行1次4个时钟周期。上面已经将寄存器填入27了,因此这条指令将执行27次。继续:
循环了27次,终于到0了,程序继续向下执行,此行指令RET,子程序返回。此条指令4个时钟周期。继续:
程序又回到了起点。
好了,可以计算一下此次延时的时间了。1个LJMP,4时钟;2个NOP,2时钟;1个MOV,2时钟;27个DJNZ,108时钟;1个RET,4时钟。
4+2+2+108+4=120。
单片机的时钟周期是:1(S)/12MHz = 1/12(us)
此次延时的时间是:120 × 1/12(us)= 10(us)
总结
其实并没有绝对的准确延时,上面只是理想化的状态,单片机的中断或者其他事件都可能影响到延时的。
另外,同样的STC单片机,同样的延时10us,同样的1T,官方给出的STC12系列和STC15系列的延时函数就不一样,STC12系列在延时函数内部要少两个NOP指令。debug对比,也是少量NOP,其他都一样。按照12系列和15系列的手册描述,他们的指令周期是相同的。
2、c51单片机红外通信接收端编程
2.1 红外遥控器发射
通常红外遥控为了提高抗干扰性能和降低电源消耗,红外遥控器常用载波的方式传送二进制编码,常用的载波频率为38kHz,这是由发射端所使用的455kHz晶振来决定的。在发射端要对晶振进行整数分频,分频系数一般取12,所以455kHz÷12≈37.9kHz≈38kHz。也有一些遥控系统采用36kHz、40 kHz、56 kHz等,一般由发射端晶振的振荡频率来决定。所以,通常的红外遥控器是将遥控信号(二进制脉冲码)调制在38KHz的载波上,经缓冲放大后送至红外发光二极管,转化为红外信号发射出去的。
二进制脉冲码的形式有多种,其中最为常用的是PWM码(脉冲宽度调制码)和PPM码(脉冲位置调制码,脉冲串之间的时间间隔来实现信号调制)。如果要开发红外接收设备,一定要知道红外遥控器的编码方式和载波频率,我们才可以选取一体化红外接收头和制定解码方案。
2.2位定义
用户码或数据码中的每一个位可以是位 ‘1’ ,也可以是位 ‘0’。区分 ‘0’和 ‘1’是利用脉冲的时间间隔来区分,这种编码方式称为脉冲位置调制方式,英文简写PPM
2.3数据格式
数据格式包括了引导码、用户码、数据码和数据码反码,编码总占32位。数据反码是数据码反相后的编码,编码时可用于对数据的纠错。注意:第二段的用户码也可以在遥控应用电路中被设置成第一段用户码的反码。
2.4程序编写要点
void ReadIr() interrupt 0
{
u8 j,k;
u16 err;
Time=0;
delay(700);//7ms
if(IRIN==0)//确认是否真的接收到正确的信号
{
err=1000; //1000*10us=10ms,超过说明接收到错误的信号,IRIN=0,中断端口没有打开。
/*当两个条件都为真是循环,如果有一个条件为假的时候跳出循环,免得程序出错的时
侯,程序死在这里*/
while((IRIN==0)&&(err>0))//等待前面9ms的低电平过去,这里也是程序没有正常打开
{
delay(1);
err--;
}
if(IRIN==1)//如果正确等到9ms低电平
{
err=500;
while((IRIN==1)&&(err>0)) //等待4.5ms的起始高电平过去
{
delay(1);
err--;
}
for(k=0;k<4;k++)//共有4组数据
{
for(j=0;j<8;j++)//接收一组数据
{
err=60;
while((IRIN==0)&&(err>0))//等待信号前面的560us低电平过去
{
delay(1);
err--;
}
err=500;
while((IRIN==1)&&(err>0)) //计算高电平的时间长度。这里必须是IRIN=1必须一直打开,但
{ //端口中断不会一直打开,必须满足这两个条件才能实现,
delay(10); //0.1ms
Time++;
err--;
if(Time>30) //时间过长,证明是错误输出。
{
return;
}
}
IrValue[k]>>=1; //k表示第几组数据,即因数据传输时二进制码,所以,一个IrValue[k]的
// u8 IrValue[6];u8 Time;值需要转化为二进制码,因此一个值需要八次转换,因为是U8一 //个字节
if(Time>=8)//如果高电平出现大于565us,那么是1
{
IrValue[k]|=0x80; // 右移的时候,高位补0,用或补位,保证高位在移动过程的IrValue[k]的 // 值不变,
}
Time=0;//用完时间要重新赋值
}
}
}
if(IrValue[2]!=~IrValue[3])
{
return;
}
}
}
3、移位总结
IrValue[k]>>=1; //k表示第几组数据 这是把变量整体右移一位,由于是无符号最高位补0 if(Time>=8) //如果高电平出现大于565us,那么是1{IrValue[k]|=0x80; //变量最高位置一 }Time=0; //用完时间要重新赋值
这样如果判断是1了就把最高位置一,0的话不用清零,因为右移的时候已经补0了
4、单片机红外通信(红外编码发射和红外接收解码代码)
一、NEC 协议特征:1. 8 位地址和 8 位命令长度2. 每次传输两遍地址(用户码)和命令(按键值)3. 通过脉冲串之间的时间间隔来实现信号的调制(PPM)4. 38Khz 载波5. 每位的周期为 1.12ms(低电平)或者 2.25ms(高电平)
二、NEC 协议的典型脉冲链:用户码和数据码中的‘0’和‘1’是利用脉冲的时间间隔来区分,这种编码方式称为脉冲 位置调制方式(PPM)。其中位 0 首先为 0.56ms 的高电平,然后是 0.565ms 的低电平;位 1 首先是 0.56ms的高电平,然后是 1.69ms 的低电平。五、编程注意事项1.红外接收头引脚信号是相反的电平 。 以上电平是从发射头角度来看,红外接收头引脚输出的是相反的电平。 如图,即没有数据传输时,P3.2 引脚保持为高电平 ,当接收到数据时,首先是引导 码,9ms 的低电平和 4.5ms 的高电平,然后是 32 位数据和 1 位停止位。一般来说, P3.2 与单片机的某中断引脚相连,当接收数据时,低电平会触发中断。2.数据从 LSB(低位)开始发送,所以选择右移 方式接收数据。 四个字节的数据都是先发送 D0,最后发送 D7。所以接收到 1 位数据后,给变量的 最高位赋值,右移。或者先右移,再给变量的最高位赋值。3.可以用一个数组保存 32 个数据的持续时间,用于后面判断高低电平。 用定时器对两个数据(中断)之间的时间计时,并保存这个持续时间用于以后判断 是位 1 还是位 0。4.可以用 2 字节,4 字节变量存储 32 个数据,以节省代码空间 。可以用两个 16 位的 int 型变量存储数据,第一个 int 变量存储用户码,第二个存储数 据码和数据反码。也可以用一个 32 位 long 型的变量存储所有数据。5.判断停止位 。 接收到停止位后可以屏蔽红外引脚的中断,防止后面数据的干扰,解码成功后在开 启中断。
4.1发射编码部分核心代码:
#include <stc8.h>
typedef unsigned char uchar;
typedef unsigned int uint;
sbit irsend = P7^5; // 红外发送
sbit K = P0^7; // 按键总开关
sbit key1 = P0^0; // 按键1
sbit key2 = P0^1; // 按键2
uint hwcount, count; // 要进中断的总次数、用于记录进入中断次数
uchar irsys[2]= {0x00,0xff}; // 16位用户码
bit hsflag = 0; // 发送38KHz载波标志位
uchar ircode; // 发送的红外数据
void Timer1Init(void) // 13微秒@12.000MHz
{
AUXR &= 0xBF; // 定时器时钟12T模式
TMOD &= 0x0F; // 设置定时器模式
TMOD |= 0x20; // 设置定时器模式
TL1 = 0xF3; // 设置定时初值
TH1 = 0xF3; // 设置定时重载值
TF1 = 0; // 清除TF1标志
TR1 = 0; // 定时器1关闭计时
ET1 = 1; // 开定时器1中断
EA = 1; // 开总中断
}
void Timer1_isr() interrupt 3
{
count++;
if(hsflag) // 有发射标志,则发射38khz
{
irsend = ~irsend;
}
else // 否则不发射,即相当于发射编码中的低电平
irsend = 1;
}
void ir_SendByte() // 红外发送一字节数据
{
uchar i;
for(i=0;i<8;i++) // 一字节八位,循环八次
{
hwcount = 43; // 0.56ms高电平,需要进43次定时器1中断(560/13=43)
hsflag = 1; // 发射38KHz载波标志
count = 0; // count置0,从这时起记录进入定时器1中断的次数
TR1 = 1; // 定时器1开启计时
while(count < hwcount); // 在此等待,直到进入中断次数达到43次
TR1 = 0; // 定时器1关闭计时
if(ircode&0x01) // 数据是从最低位开始发送的,最低位是1则要进130次中断
{
hwcount = 130; // 1.69ms低电平,进中断总次数130(1690/13=130)
}
else // 最低位是0,则要进43次定时器1中断
{
hwcount = 43; // 0.565ms低电平,进中断总次数43(565/13=43)
}
hsflag = 0; // 低电平,不需要38kHz载波
count = 0;
TR1 = 1;
while(count < hwcount);
TR1 = 0;
ircode = ircode >> 1; // 将数据右移一位,即从低位到高位发送
}
}
void ir_Send(uchar date)
{
hwcount = 692; // (引导码中的)9ms高电平,9000/13=692
hsflag = 1; // 高电平需要38kHz载波
count = 0;
TR1 = 1;
while(count < hwcount);
TR1 = 0;
hwcount = 346; // (引导码中)4.5ms低电平,4500/13=346
hsflag = 0; // 低电平不需要38kHz载波
count = 0;
TR1 = 1;
while(count < hwcount);
TR1 = 0;
ircode = irsys[0]; // 发送用户码的前8位
ir_SendByte();
ircode = irsys[1]; // 发送用户码的后8位
ir_SendByte();
ircode = date; // 发送键值
ir_SendByte();
ircode = ~date; // 发送键值反码
ir_SendByte();
hwcount = 43; // 0.56ms高电平,560/13=43
hsflag = 1; // 高电平需要38kHz载波
count = 0;
TR1 = 1; // 定时器1开启计时
while(count < hwcount);
TR1 = 0; // 定时器1关闭计时
hwcount = 43; // (NEC协议中的停止码)0.56ms低电平
hsflag = 0;
count = 0;
TR1 = 1;
while(count < hwcount);
TR1 = 0;
irsend = 1; // 关闭红外发射
}
void main()
{
K = 0; // 按键总开关拉低
Timer1Init(); // 定时器1初始化
while(1)
{
if(key1 == 0) // 按键1
{
ir_Send(0x8a); // 发送键值8aH
}
if(key2 == 0) // 按键2
{
ir_Send(0xa6); // 发送键值a6H
}
}
}
4.2按键代码
#include "key.h"
#define GPIO_KEY P0
bit flag = 0;
/**********************************************
* 函数名:Check_key
* 描述 :矩阵按键扫描(缺陷:不能通过按一次按键,给变量只加一)
* 参数 :无
* 返回值:键值
* 调用 :外部调用
**********************************************/
//unsigned char Check_key(void)
//{
// unsigned char row,col,temp1,temp2,keyvalue;
// temp1 = 0x01;
// for(row=0;row<4;row++) // 行扫
// {
// P0 = 0xF0; // 先将P0.4~P0.7置高
// P0 = ~temp1; // 使P0.1~P0.3中有一位为0
// temp1 *= 2; // temp1左移一位
// if((P0 & 0xF0) < 0xF0) // 当按键按下时,(P0 & 0xF0) 高四位不在是F,可能为7或B或D或E。
// { // 这时可以确定按下的是(row+1)行
// temp2 = 0x80;
// for(col=0;col<4;col++) // 列扫
// {
// if((P0 & temp2)==0x00) // 当(P0 & temp2)等于0x00时,可以确定按下的位置是(col+1)列
// {
// keyvalue = row*4+col; // 得到所按下按键的键值
// return keyvalue; // 把得到的键值作为返回值
// }
// temp2 /= 2; // temp2右移一位
// }
// }
// }
// return 16; // 因为定义数码管段选表中,16对应的是全灭,故无按键按下时返回16
//}
/*************************************************
* 函数名:delay_ms
* 描述 :延时函数
* 参数 :xms , xms是几延时几毫秒
* 返回值:无
* 调用 :内部调用
*************************************************/
void delay_ms(unsigned int xms)
{
unsigned char i, j;
unsigned int x;
for(x=xms;x>0;x--)
{
i = 16;
j = 147;
do
{
while (--j);
} while (--i);
}
}
/*************************************************
* 函数名:key_scan
* 描述 :把按下的矩阵按键的键值返回
* 参数 :无
* 返回值:按下的键值
* 调用 :外部调用
*************************************************/
unsigned char key_scan()
{
unsigned char keyvalue1,keyvalue2,a=0;
if(flag==0)
{
keyvalue2=16;
flag=1;
}
GPIO_KEY = 0xf0; // 高四位为1,低四位为0
if(GPIO_KEY != 0xf0)
{
delay_ms(10); // 延时消抖
if(GPIO_KEY != 0xf0)
{
GPIO_KEY=0xf0;
switch(GPIO_KEY)
{
case 0xe0: keyvalue1 = 3;break; // 确定矩阵按键被按下的位置是第几列
case 0xd0: keyvalue1 = 2;break; // 0、1、2、3
case 0xb0: keyvalue1 = 1;break;
case 0x70: keyvalue1 = 0;break;
}
GPIO_KEY=0x0f;
// 确定矩阵按键被按下位置的键值:列(或0或1或2或3) + 行(或0或4或8或12)
if((GPIO_KEY != 0x0d)||(GPIO_KEY != 0x0b)||(GPIO_KEY != 0x07))
keyvalue2 = keyvalue1;
if(GPIO_KEY == 0x0d)
keyvalue2 = keyvalue1+4;
if(GPIO_KEY == 0x0b)
keyvalue2 = keyvalue1+8;
if(GPIO_KEY == 0x07)
keyvalue2 = keyvalue1+12;
while((a<50)&&(GPIO_KEY!=0x0f))
{
delay_ms(10);
a++;
}
}
}
if(GPIO_KEY==0xF0)
keyvalue2 = 16;
return keyvalue2;
}
4.3单片机红外解码源程序如下
#include <stc8.h>
#include "hc595.h"
typedef unsigned char uchar;
typedef unsigned int uint;
sbit ir = P3^2; // 红外接收
uchar irtime; // 记录定时器0中断次数
uchar irdata[33]; // 存放接收到的33位红外数据的每位进入中断的次数
uchar bitnum; // 数组下标,用于记录是第几位红外数据
uchar startflag; // 开始接收标志
uchar irok; // 33位数据收集完成标志
uchar ircode[4]; // 用于存放16位用户码+8位键值+8位键值反码
uchar irprosok; // 四个码值转化完成标志
uchar disnum[8]; // 把四个码值分割成8位,用于数码管显示
void Int0Init(void) // 外部中断0初始化
{
IT0 = 1; // 下降沿触发
EX0 = 1; // 开启外部中断0
EA = 1; // 开总中断
ir = 1; // 红外接收置1
}
void Timer0Init(void) // 定时器0初始化,模式:12T,晶振:12MHz
{
TMOD = 0x02; // 定时器0模式2,8位自动重装载
TH0 = 0x00; // 256*(1/12)*12 = 0.256ms
TL0 = 0x00;
ET0 = 1; // 开定时器0中断
EA = 1; // 开总中断
TR0 = 1; // 定时器0开始计时
}
void irpros(void) // 码值转换
{
uchar num, k, i, j;
k = 1;
for(j=0;j<4;j++) // 四个码值,循环四次
{
for(i=0;i<8;i++) // 每个码值八位,循环八次
{
num = num >> 1; // 从最低位开始接收
if(irdata[k]>6) // 判断这位数据是0还是1:(0:1.12/0.256=4.4)(1:2.25/0.256=8.8)
{
num = num | 0x80;
}
k++;
}
ircode[j] = num; // 存放码值
}
irprosok = 1; // 码值转换完成标志
}
void irwork(void) // 码值分割,用于数码管显示
{
disnum[0] = ircode[0]/16;
disnum[1] = ircode[0]%16;
disnum[2] = ircode[1]/16;
disnum[3] = ircode[1]%16;
disnum[4] = ircode[2]/16;
disnum[5] = ircode[2]%16;
disnum[6] = ircode[3]/16;
disnum[7] = ircode[3]%16;
}
void Int0 () interrupt 0
{
if(startflag)
{
if(irtime>32 && irtime<63) // 8~16ms
{
bitnum = 0;
}
irdata[bitnum] = irtime; // 存放每位进中断的次数
irtime = 0; // 清零,为下次计数做准备
bitnum++; // 下标加一
if(bitnum==33) // 判断是否33位数据接收完
{
bitnum = 0;
irok = 1; // 接收完成标志
}
}
else
{
irtime = 0;
startflag = 1;
}
}
void Timer0() interrupt 1
{
irtime++;
}
void main()
{
Int0Init();
Timer0Init();
while(1)
{
if(irok == 1) // 接收完成
{
irpros();
irok = 0;
}
if(irprosok == 1) // 码值转换完成
{
irwork();
irprosok = 0;
}
display(0,disnum[4]); // 显示键值
display(1,disnum[5]);
display(2,20); // 显示"H"
}
}
总结下,下面这一个代码比较清晰,思路,利于理解,明确了中断和定时的时间,而不像前面的是利用单片机的机器周期,指令周期来确认。
相关问答
C51单片机 中有源蜂鸣器的程序肿么写啊,还有就是,有源蜂鸣器...由于单片机驱动能力有限,常常连接三极管驱动蜂鸣器。这得看三极管的型号,不同...P1.0=1;//P1.0对应的是蜂鸣器的接口那短。delay();p1.0=0;delay();}有源....
单片机C51 的汇编语言 编程[回答]pragma只是用于之间潜入asm代码,不是变了相的混合编程技术,它不能直接调用其他文件(注意是文件)中的函数。真正意义上的多模块编程,每个模块之间都...
单片机C51 的汇编语言 编程pragma只是用于之间潜入asm代码,不是变了相的混合编程技术,它不能直接调用其他文件(注意是文件)中的函数。真正意义上的多模块编程,每个模块之间都...
C51单片机 初学者该买什么硬件?1.建议买个带MAX232和DB9接口的最小系统板,要扩充硬件时就用杜邦线连接。这样成本低,结构简单可靠。2.USB转串口的线是必须的,毕竟现在没几台电脑是有原生串...
STC 单片机 能用汇编写程序吗?指令和 C51 有什么区别?当然可以用和汇编语言写。其实STC就是51内核的单片机。指令系统当然和c51单片机兼容的。不过有的STC的外设比标准的C51丰富,比如有的STC有P4口,普通的C51就没...
C51 语言的程序结构有哪几种?C51语言的程序结构有以下三种顺序结构。顺序结构是最基本、最简单的结构,在这种结构中,程序由低地址到高地址依次执行,给出顺序结构流程图,程序先执行A操作...
单片机c51 中的任何程序总是由哪三种基本结构组成?单片机C51中的任何程序总是由三种基本结构组成:顺序结构、选择结构和循环结构。顺序结构是程序按照指定的顺序依次执行各条语句,没有中断或跳转。选择结构包...
c51 中 单片机 的库文件有哪些?51单片机有三个个库MCS-51存储器有三个空间,分别是片内RAM(内部数据存储器)、片外RAM(外部扩展的数据存储器)和ROM(内部或者外部程序存储器)。按照具...5...
如何把 c51 程序下载到 单片机 ?要将C51程序下载到单片机,首先需要将程序编译成HEX文件。然后,使用专用的下载工具(如烧录器或编程器)将HEX文件通过编程接口连接到单片机的相应引脚上。接下...
c51单片机 max7219点阵式如何写入地址?在C51单片机中,使用MAX7219驱动点阵显示时,写入地址需要以下步骤:首先,通过SPI通信发送一个16位数据包,其中高8位表示要写入的寄存器地址,低8位表示相应的...